Sequential steps in DNA replication are inhibited to ensure reduction of ploidy in meiosis

نویسندگان

  • Hui Hua
  • Mandana Namdar
  • Olivier Ganier
  • Juraj Gregan
  • Marcel Méchali
  • Stephen E. Kearsey
چکیده

Meiosis involves two successive rounds of chromosome segregation without an intervening S phase. Exit from meiosis I is distinct from mitotic exit, in that replication origins are not licensed by Mcm2-7 chromatin binding, but spindle disassembly occurs during a transient interphase-like state before meiosis II. The absence of licensing is assumed to explain the block to DNA replication, but this has not been formally tested. Here we attempt to subvert this block by expressing the licensing control factors Cdc18 and Cdt1 during the interval between meiotic nuclear divisions. Surprisingly, this leads only to a partial round of DNA replication, even when these factors are overexpressed and effect clear Mcm2-7 chromatin binding. Combining Cdc18 and Cdt1 expression with modulation of cyclin-dependent kinase activity, activation of Dbf4-dependent kinase, or deletion of the Spd1 inhibitor of ribonucleotide reductase has little additional effect on the extent of DNA replication. Single-molecule analysis indicates this partial round of replication results from inefficient progression of replication forks, and thus both initiation and elongation replication steps may be inhibited in late meiosis. In addition, DNA replication or damage during the meiosis I-II interval fails to arrest meiotic progress, suggesting absence of checkpoint regulation of meiosis II entry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cdc14 phosphatase directs centrosome re-duplication at the meiosis I to meiosis II transition in budding yeast

Background Gametes are generated through a specialized cell division called meiosis, in which ploidy is reduced by half because two consecutive rounds of chromosome segregation, meiosis I and meiosis II, occur without intervening DNA replication. This contrasts with the mitotic cell cycle where DNA replication and chromosome segregation alternate to maintain the same ploidy. At the end of mitos...

متن کامل

Multiple kinases inhibit origin licensing and helicase

16 Meiotic cells undergo a single round of DNA replication followed by two rounds of 17 chromosome segregation (the meiotic divisions) to produce haploid gametes. Both DNA 18 replication and chromosome segregation are similarly regulated by CDK oscillations in mitotic 19 cells. Yet how these two events are uncoupled between the meiotic divisions is unclear. Using 20 Saccharomyces cerevisiae, we...

متن کامل

Slowing Replication in Preparation for Reduction

Meiosis reduces the ploidy of the genome to generate haploid gametes for sexual reproduction. As gametes are portals for the generational transfer of genetic material, it is imperative that the genome is copied accurately and that chromosomes segregate equally into each haploid gamete. Proper chromosome segregation requires the formation of specialized chromosome axes to create and maintain an ...

متن کامل

The evolution of meiotic sex and its alternatives

Meiosis is an ancestral, highly conserved process in eukaryotic life cycles, and for all eukaryotes the shared component of sexual reproduction. The benefits and functions of meiosis, however, are still under discussion, especially considering the costs of meiotic sex. To get a novel view on this old problem, we filter out the most conserved elements of meiosis itself by reviewing the various m...

متن کامل

c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes.

The meiotic cycle reduces ploidy through two consecutive M phases, meiosis I and meiosis II, without an intervening S phase. To maintain ploidy through successive generations, meiosis must be followed by mitosis after the recovery of diploidy by fertilization. However, the coordination from meiotic to mitotic cycle is still unclear. Mos, the c-mos protooncogene product, is a key regulator of me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2013